INVERTEBRATE LEARNING AND MEMORY

Edited by
RANDOLF MENZEL
Freie Universität Berlin, Berlin, Germany
PAUL R. BENJAMIN
School of Life Sciences, University of Sussex, Brighton, UK
Contents

List of Contributors xiii

INTRODUCTION

1. Beyond the Cellular Alphabet of Learning and Memory in Invertebrates
 RANDOLF MENZEL AND PAUL R. BENJAMIN
 Introduction 3
 Beyond the Cellular Alphabet: Circuit and Network Levels of Analysis, the Necessary Step 4
 Do Invertebrates have Cognitive Abilities? 4
 Reference 5

2. Concepts of Invertebrate Comparative Cognition

 M. HEISENBERG
 Introduction 9
 Behavioral Modules 10
 Outcome Expectation 10
 The Active Brain 11
 Action Selection 12
 Conclusions 12
 Acknowledgments 13
 References 13

3. Cognitive Components of Insect Behavior
 MARTIN GIURFA AND RANDOLF MENZEL
 Introduction 14
 Acting Upon the Environment: Exploration, Instrumental Learning, and Observational Learning 14
 Expectation 16
 Generalization, Categorization, and Concept Learning 17
 Memory Processing 20
 Insect Intelligence and Brain Structure 22
 Miniature Brains 23
 Conclusion 23
 References 24

4. Exploring Brain Connectivity in Insect Model Systems of Learning and Memory
 JÜRGEN RYBAK
 Introduction 26
 Insect Brains are Small 27
 Methods of Analyzing Insect Microcircuits 27
 Discussion and Outlook 36
 References 37

5. ‘Decision Making’ in Larval Drosophila
 MICHAEL SCHLEYER, SÖREN DIEGELMANN, BIBIOT MICHELS, TIMO SAUMWEBER AND BERTRAM GERBER
 Introduction 41
 Architecture of the Chemobehavioral System 42
 A Working Hypothesis of Memory Trace Formation 45
 The Decision to Behaviorally Express a Memory Trace—or Not 48
 Aspects of Decision Making 51
 Conclusion 53
 Acknowledgments 53
 References 53

DEVELOPMENTS IN METHODOLOGY

6. Optophysiological Approaches to Learning and Memory in Drosophila melanogaster
 THOMAS RIEMENSPERGER AND ANDRÉ FIALA
 Introduction: Strategies to Determine Neuronal Substrates Underlying Learning and Memory 59
 Disruptive Alterations: Ablation, Mutation, and Block of Synaptic Transmission 60
 Detectability: Optical Imaging Using DNA-Encoded Fluorescence Probes 62
 Mimicry: Optogenetic and Thermogenetic Activation of Neurons 63
 Conclusions 65
 Acknowledgment 66
 References 66

7. Computational Analyses of Learning Networks
 DOUGLAS A. BAXTER, ENRICO CATALDO AND JOHN H. BYRNE
 Introduction 69
 Olfactory Learning in Insects 69
MECHANISMS FROM THE MOST IMPORTANT SYSTEMS

4.1 Nematodes/Caenorhabditis elegans

9. Mechanosensory Learning and Memory in *Caenorhabditis elegans*

ANDREA H. McEWAN AND CATHERINE H. RANKIN

- Introduction to *Caenorhabditis elegans* Learning and Memory 91
- Characteristics of Short-Term Tap Habituation 92
- Development of Tap Habituation 94
- Circuitry Underlying Tap Habituation 96
- Neurotransmitters Involved in Tap Habituation 98
- Locus of Plasticity in Tap Habituation 98
- Genes that Play a Role in Tap Habituation 100
- Long-Term Memory for Tap Habituation 104
- Context: Short-Term and Long-Term Memory 106
- Conclusions 108
- References 109

10. Molecular and Cellular Circuits Underlying *Caenorhabditis elegans* Olfactory Plasticity

JOY ALCEDO AND YUN ZHANG

- *Caenorhabditis elegans* Olfactory System 112
- *Caenorhabditis elegans* Olfactory Plasticity 113
- Summary 120
- Acknowledgments 120
- References 120

11. Thermosensory Learning in *Caenorhabditis elegans*

HIROYUKI SASAKURA AND IKUE MORI

- *Caenorhabditis elegans* Neuroscience 124
- Behavioral Plasticity in C. elegans 125
- Thermotaxis in C. elegans 125
- Neural Circuit for Thermotaxis 128
- Thermosensory Signaling 129
- AFD Thermosensory Neurons Memorize Cultivation Temperature: The Sensory Neuron Acts as a Memory Device 131
- Associative Learning between Temperature and Food 132
- Regulation of Associative Learning by Insulin and Monoamine Signaling 133
- Information Flow from AFD and AWC to AY 134
- RIA Interneuron as an Integrator and Locomotion Controller 135
- Conclusion and Perspective 135
- Acknowledgments 136
- References 136

12. Age-Dependent Modulation of Learning and Memory in *Caenorhabditis elegans*

SHIN MURAKAMI

- Introduction 140
- Classification of Learning and Memory 140
- Reduced Plasticity but Well-Retained ‘Old Memory’ 141
- Two Phases of AMI 141
- Aging-Related Changes in Associative Learning and Memory 142
- Endocrine Disturbance as a Cause of Early AMI 143
- Neural Regulation of Memory and AMI 144
- Midlife Crisis Theory and Epigenetic Changes 146
- Perspectives 147
- References 148

13. Salt Chemotaxis Learning in *Caenorhabditis elegans*

YUICHI IINO

- Salt Chemotaxis in *Caenorhabditis elegans* 151
- Salt Chemotaxis Learning: The Behavior 152
- The Role of ASE Neurons in Salt Chemotaxis Learning 153
- The Insulin/Phosphatidylinositol 3-Kinase Pathway 153
- The Gq/Diacylglycerol/Protein Kinase C Pathway 154
- Other Genes Acting in ASER 154
- The EGL-8/Diacylglycerol/Protein Kinase D Pathway Acting in ASEL 154
- Involvement of Other Sensory Neurons 155
- Roles of Interneurons 155
- Changes in Neuronal Activities Caused by Learning 156
- How is the Starvation Signal Transmitted? 156
- Molecular Pathways for Memory Retention 157
- Long-Term Memory 157
- Experience-Dependent Salt Chemotaxis in Fed Animals 157
- Conclusion 158
- References 158
4.2 Mollusks

4.2.1 Gastropods

14. A Systems Analysis of Neural Networks Underlying Gastropod Learning and Memory
 PAUL R. BENJAMIN

 Introduction 163
 Behavior and Model Networks 163
 The Complexity of Gastropod Learning 166
 Synaptic Mechanisms for Learning 167
 Nonsynaptic Cellular Mechanisms for learning 174
 Discussion and Conclusions 177
 Acknowledgments 179
 References 179

15. Comparison of Operant and Classical Conditioning of Feeding Behavior in Aplysia
 RICCARDO MOZZACHIODI, DOUGLAS A. BAXTER AND JOHN H. BYRNE

 Introduction 183
 Feeding Behavior in Aplysia and its Underlying Neural Circuit 183
 Feeding Behavior is Modified by Associative Learning 184
 Cellular Analysis of Appetitive Classical and Appetitive Operant Conditioning of Feeding 186
 Comparison of the Molecular Mechanisms of Operant and Classical Conditioning 189
 Conclusions 191
 Acknowledgments 191
 References 191

16. Mechanisms of Short-Term and Intermediate-Term Memory in Aplysia
 ROBERT D. HAWKINS, IGOR ANTONOV AND IKSUNG JIN

 Introduction 194
 Simple Forms of Learning in Aplysia 194
 Short-Term Plasticity 195
 The Relationship between Short- and Long-Term Plasticity, and the Discovery of Intermediate-Term Plasticity 196
 Mechanisms of Induction, Maintenance, and Expression of Intermediate-Term Facilitation 197
 Pre- and Postsynaptic Mechanisms of Intermediate-Term Plasticity 198
 Spontaneous Transmitter Release is Critical for the Induction of Intermediate- and Long-Term Facilitation 199
 Spontaneous Transmitter Release from the Presynaptic Neuron Recruits Postsynaptic Mechanisms of Intermediate- and Long-Term Facilitation 200
 Conclusions 201
 Acknowledgments 203
 References 203

17. Synaptic Mechanisms of Induction and Maintenance of Long-Term Sensitization Memory in Aplysia
 DAVID L. GLANZMAN

 Introduction 206
 Long-Term Sensitization in Aplysia: Mechanisms of Induction 207
 Maintenance of LTS Memory in Aplysia 213
 Summary 215
 Acknowledgments 215
 References 216

18. Roles of Protein Kinase C and Protein Kinase M in Aplysia Learning
 MARGARET HASTINGS, CAROLE A. FARAH AND WAYNE S. SOSSIN

 Introduction 221
 The PKC Family 221
 Isoform-Specific Roles of PKCs during Distinct Learning Paradigms 225
 Interaction of PKCs with Other Signal Transduction Pathways 230
 Conclusion 231
 Acknowledgments 231
 References 232

19. Multisite Cellular and Synaptic Mechanisms in Hemimessa Pavlovian Conditioning
 TERRY CROW AND NAIN GE JIN

 Introduction 236
 Pavlovian Conditioning and the CR Complex 237
 Neural Network 237
 Long-Term Memory Following Multitrial Conditioning 238
 Cellular and Molecular Mechanisms Underlying Short-, Intermediate-, and Long-Term Memory Formation 240
 One-Trial Conditioning 241
 Second Messengers 242
 Long-Term Memory Depends on Translation and Transcription 244
 Proteins Regulated by Pavlovian Conditioning: Proteomic Analyses 244
 Mechanisms of CS-US Associations in Sensory Neurons 245
 Summary 247
 References 247

20. Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea
 OTÓROY KEMENES

 Introduction 251
 Molecular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea 251
21. Operant Conditioning of Respiration in Lymnaea
KEN LUKOWIAK AND SARAH DALESMAN

Introduction 265
Aerial Respiratory Behavior 267
Operant Conditioning of Aerial Respiratory Behavior 268
Ecologically Relevant Stressors and LTM Formation 268
What is Stressful for a Snail? 269
Resource Restriction 269
Social Stress 270
Thermal Stress 271
Anthropogenic Stress 271
Interaction between Stressors 272
Population Differences 274
Conclusions 276
References 276

22. Associative Memory Mechanisms in Terrestrial Slugs and Snails
ALAN GELPERIN

Introduction 280
Learning Solutions to Lifestyle Challenges by Terrestrial Gastropods 281
Complexity of Odor Conditioning 283
Neurogenesis May Contribute to Olfactory Learning 284
Procerebrum as an Olfactory Learning Center 284
Progress with Limax Odor Learning 285
Learning of Tentacle Position 286
Conclusions 286
References 286

4.2.2 Cephalopods

23. Observational and Other Types of Learning in Octopus
PIERO AMODIO AND GRAZIANO FIORITO

Introduction 293
Complexity versus Simplicity: Examples from Octopuses 293
Smart versus Stupid: Learning and Other Forms of Behavioral Plasticity 294
Learning from Others in Octopuses: Experimental Evidence 295
Why Should Octopus Possess Social Learning Skills? 297
Conclusions 299
Acknowledgments 299
References 299

24. The Neurophysiological Basis of Learning and Memory in Advanced Invertebrates
BINYAMIN HOCHNER AND TAL SHOMRAT

Introduction 303
The Cephalopod Nervous System 304
Anatomy of the Vertical Lobe System 304
Neurophysiology of SFL Input to the Octopus Vertical Lobe 305
Neuronal Output from the Vertical Lobes of Octopus and Cuttlefish Demonstrates Activity-Dependent Long-Term Potentiation 307
Synaptic Plasticity in the Vertical Lobes of Octopus and Cuttlefish 308
What do the Vertical Lobes of Octopus and Cuttlefish Compute? 310
Mechanism of LTP Induction in the Octopus Vertical Lobe 311
Neuromodulation in the Vertical Lobe 311
Are the Octopus Vertical Lobe and its LTP Involved in Behavioral Learning and Memory? 312
A System Model for Octopus Learning and Memory 314
Conclusion 316
Acknowledgments 316
References 316

25. Learning, Memory, and Brain Plasticity in Cuttlefish (Sepia officinalis)
LUDOVIC DICKEL, ANNE-SOPHIE DARMAILLACQ, CHRISTELLE JOZET-ADVES AND CECILE BELLANGER

Introduction 318
The Cuttlefish Brain 319
Brain and Behavioral Plasticity in Adults 320
Developmental Perspectives 327
Conclusion 330
References 331

4.3 Crustacea

26. A Multidisciplinary Approach to Learning and Memory in the Crab Neohelice (Chasmagnathus) granulata
DANIEL TOMSIC AND ARTURO ROMANO

Introduction: Crustaceans as Model Systems in Neurobiology 337
Learning and Memory in Crustaceans 337
The Crab Neohelice: Habitat and Habits 338
Crab Learning in the Laboratory 339
Context-Signal Memory 339
Massed and Spaced Training Render Two Different Kinds of Memory 342
Anatomical Description of Brain Regions Involved in Crab’s Visual Memory 343
In Vivo Physiological Characterization of Brain Interneurons 344
Characterization of the LG Neurons and their Role in the Crab Escape Response 344
LG Neurons and their Role in Visual Learning and Memory 344
Pharmacological and Molecular Characterization of CSM Formation and Processing 345
Role of Protein Kinase A in Memory Consolidation 346
Mitogen-Activated Protein Kinases in CSM 346
Rel/NF-kB, a Key Transcription Factor in Consolidation of CSM 347
Epigenetic Mechanisms in CSM Formation 347
CSM Reconsolidation and Extinction: A Cornerstone in the Study of Memory Reprocessing 348
Conclusion 350
Acknowledgment 351
References 351

4.4 Insects

4.4.1 Drosophila

27. Drosophila Memory Research through Four Eras
SETH M. TOMCHIK AND RONALD L. DAVIS
Introduction 359
The Genetics of Drosophila Learning 360
Drosophila Learning 362
The Olfactory Nervous System 365
Neural Circuits Underlying Learning and Memory 366
Subcellular Signaling Dynamics 369
Memory Traces 369
Outlook 371
References 374

30. Neural Correlates of Olfactory Learning in the Primary Olfactory Center of the Honeybee Brain
JEAN-CHRISTOPHE SANDOZ
Introduction 416
Studied Forms of Olfactory Learning in Honeybees 417
The Olfactory System 419
The Search for Experience-Induced Plasticity in the Antennal Lobe 422
Where Do We Go from Here? The Multifactorial Quality of the Search for Neural Plasticity 429
Acknowledgments 430
References 430

31. Memory Phases and Signaling Cascades in Honeybees
ULI MOLLER
Appetitive Olfactory Learning in Honeybees: Behavior and Neuronal Circuitry 433
Reward and Odor Stimuli Induce Fast and Transient Activation of the CAMP- and Ca2+-Dependent Signaling Cascades in the Antennal Lobes 434
The Link between Training Parameters and Memory Formation: The Specific Role of Second Messenger-Regulated Signaling Cascades 436
Satiation Affects Formation of Appetitive Memory via Molecular Processes during Conditioning 437
Midterm Memory Requires the Interaction of a Ca2+-Regulated Protease and Protein Kinase C 438
Mushroom Body Glutamate Transmission is Implicated in Memory Formation 439
Parallel Signaling Processes in the ALs and the MBs Contribute to Memory Formation 439
Acknowledgments 440
References 440
32. Pheromones Acting as Social Signals
Modulate Learning in Honeybees
ELODIE URLACHER, JEAN-MARC DEVAUD AND ALISON R. MERCER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>442</td>
</tr>
<tr>
<td>Pheromones and their Roles</td>
<td>442</td>
</tr>
<tr>
<td>Pheromone Modulation of Learning Behavior</td>
<td>443</td>
</tr>
<tr>
<td>Coincidental or Adaptive?</td>
<td>445</td>
</tr>
<tr>
<td>Modes of Action</td>
<td>445</td>
</tr>
<tr>
<td>A Focus for Future Studies</td>
<td>447</td>
</tr>
<tr>
<td>References</td>
<td>447</td>
</tr>
</tbody>
</table>

33. Extinction Learning and Memory Formation in the Honeybee
DOROTHEA EISENHARDT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinction Resembles an Animal’s Adaptation to a Fluctuating Environment</td>
<td>450</td>
</tr>
<tr>
<td>Classical Conditioning in Harnessed Honeybees</td>
<td>450</td>
</tr>
<tr>
<td>Spontaneous Recovery from Extinction Demonstrates the Existence of Two Memories</td>
<td>451</td>
</tr>
<tr>
<td>Reinstatement of the Extinguished Memory is Context Dependent</td>
<td>452</td>
</tr>
<tr>
<td>Extinction of a Consolidated Long-Term Memory</td>
<td>452</td>
</tr>
<tr>
<td>Consolidating Extinction Memory</td>
<td>452</td>
</tr>
<tr>
<td>Extinction Memory Formation Depends on Reward Learning</td>
<td>452</td>
</tr>
<tr>
<td>Reconsolidation of Reward Memory</td>
<td>453</td>
</tr>
<tr>
<td>Protein Degradation Constrains the Reward Memory</td>
<td>453</td>
</tr>
<tr>
<td>Epigenetic Mechanisms Impact on Memory Formation and the Resistance to Extinction</td>
<td>454</td>
</tr>
<tr>
<td>Extinction in Vertebrates and Honeybees: Conserved Behavior, Conserved Molecular Mechanisms, But Different Brains?</td>
<td>455</td>
</tr>
<tr>
<td>Conclusion</td>
<td>455</td>
</tr>
<tr>
<td>References</td>
<td>456</td>
</tr>
</tbody>
</table>

34. Glutamate Neurotransmission and Appetitive Olfactory Conditioning in the Honeybee
GERARD LEBOULLE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>458</td>
</tr>
<tr>
<td>Glutamate and Components of the Glutamate Neurotransmission in the Honeybee Nervous System</td>
<td>459</td>
</tr>
<tr>
<td>Architecture of the Glutamatergic Neurotransmission</td>
<td>460</td>
</tr>
<tr>
<td>Glutamatergic Neurotransmission is Important for Learning and Memory</td>
<td>461</td>
</tr>
<tr>
<td>Conclusion</td>
<td>464</td>
</tr>
<tr>
<td>References</td>
<td>465</td>
</tr>
</tbody>
</table>

35. Cellular Mechanisms of Neuronal Plasticity in the Honeybee Brain
BERND GRÜNEWALD

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>467</td>
</tr>
<tr>
<td>Cellular Physiology of Membrane Excitability</td>
<td>467</td>
</tr>
</tbody>
</table>

36. Behavioral and Neural Analyses of Punishment Learning in Honeybees
STEVANUS RIO TEDJAKUMALA AND MARTIN GIURFA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>478</td>
</tr>
<tr>
<td>Olfactory Conditioning of the Sting Extension Reflex</td>
<td>478</td>
</tr>
<tr>
<td>Olfactory Conditioning of SER is a True Case of Aversive Learning</td>
<td>480</td>
</tr>
<tr>
<td>Olfactory Conditioning of SER Leads to the Formation of Long-Term Memories</td>
<td>481</td>
</tr>
<tr>
<td>The Neural Basis of Aversive Learning</td>
<td>482</td>
</tr>
<tr>
<td>Dopaminergic Neurons in the Bee Brain</td>
<td>483</td>
</tr>
<tr>
<td>Modularity of Reward and Punishment Systems in Honeybees</td>
<td>483</td>
</tr>
<tr>
<td>Conclusion</td>
<td>484</td>
</tr>
<tr>
<td>References</td>
<td>485</td>
</tr>
</tbody>
</table>

37. Brain Aging and Performance Plasticity in Honeybees
DANIEL MUNCH AND GRO V. AMDAM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Caste, Social Environment, and Flexible Life Histories in the Honeybee</td>
<td>487</td>
</tr>
<tr>
<td>Behavioral Senescence in Honeybees</td>
<td>488</td>
</tr>
<tr>
<td>Heterogeneity of Behavioral Aging</td>
<td>489</td>
</tr>
<tr>
<td>Aging Interventions</td>
<td>490</td>
</tr>
<tr>
<td>Negligible Senescence</td>
<td>492</td>
</tr>
<tr>
<td>Underpinnings of Plastic Brain Aging</td>
<td>492</td>
</tr>
<tr>
<td>Immune Defenses and Aging</td>
<td>494</td>
</tr>
<tr>
<td>Proteome, Aging, and the Reversal of Aging Symptoms</td>
<td>495</td>
</tr>
<tr>
<td>Application-Oriented Research: Screening for Treatments that May Extend Life Span and Improve Health</td>
<td>495</td>
</tr>
<tr>
<td>Synthesis</td>
<td>497</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>497</td>
</tr>
<tr>
<td>References</td>
<td>497</td>
</tr>
</tbody>
</table>

4.4.3 Ants

38. Learning and Recognition of Identity in Ants
PATRIZIA D'ETTORRE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Learning Involved in the Formation of the Nestmate Recognition Template?</td>
<td>505</td>
</tr>
<tr>
<td>When Learning and Memory are Indispensable</td>
<td>507</td>
</tr>
<tr>
<td>Tools to Study Olfactory Learning and Memory in Ants</td>
<td>510</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>511</td>
</tr>
<tr>
<td>References</td>
<td>512</td>
</tr>
<tr>
<td>Page</td>
<td>Chapter Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>39</td>
<td>Bounded Plasticity in the Desert Ant's Navigational Tool Kit</td>
</tr>
<tr>
<td>40</td>
<td>Learning and Decision Making in a Social Context</td>
</tr>
<tr>
<td>41</td>
<td>Olfactory and Visual Learning in Cockroaches and Crickets</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>