Physical Biology of the Cell

Second Edition

Rob Phillips Jane Kondev Julie Theriot Hernan G. Garcia

Illustrated by Nigel Orme

Garland Science Taylor & Francis Group LONDON AND NEW YORK

Contents

Preface	vii
Acknowledgments	xiii
Special Sections	xxix
Map of the Maps	XXX

PART 1 THE FACTS OF LIFE

Chapter 1:	Why: Biology by the Numbers	3
Chapter 2:	What and Where: Construction Plans for Cells and Organisms	35
Chapter 3:	When: Stopwatches at Many Scales	87
Chapter 4:	Who: "Bless the Little Beasties"	137

PART 2 LIFE AT REST

Chapter 5:	Mechanical and Chemical Equilibrium in the Living Cell	187
Chapter 6:	Entropy Rules!	237
Chapter 7:	Two-State Systems: From Ion Channels to Cooperative Binding	281
Chapter 8:	Random Walks and the Structure of Macromolecules	311
Chapter 9:	Electrostatics for Salty Solutions	355
Chapter 10:	Beam Theory: Architecture for Cells and Skeletons	383
Chapter 11:	Biological Membranes: Life in Two Dimensions	427

PART 3 LIFE IN MOTION

Chapter 12:	The Mathematics of Water	483
Chapter 13:	A Statistical View of Biological Dynamics	509
Chapter 14:	Life in Crowded and Disordered Environments	543
Chapter 15:	Rate Equations and Dynamics in the Cell	573
Chapter 16:	Dynamics of Molecular Motors	623
Chapter 17:	Biological Electricity and the Hodgkin–Huxley Model	681
Chapter 18:	Light and Life	717

PART 4 THE MEANING OF LIFE

Chapter 19:	Organization of Biological Networks	801
Chapter 20:	Biological Patterns: Order in Space and Time	893
Chapter 21:	Sequences, Specificity, and Evolution	951
Chapter 22:	Whither Physical Biology?	1023
Index		1039

÷.

Contents in Detail

Preface	vii
Acknowledgments	xiii
Special Sections	xxix
Map of the Maps	XXX

PART 1 THE FACTS OF LIFE

Chap	ter 1 Why: Biology by the Numbers	3
1.1	BIOLOGICAL CARTOGRAPHY	3
1.2	PHYSICAL BIOLOGY OF THE CELL	4
	Model Building Requires a Substrate of Biological Facts and Physical (or Chemical) Principles	5
1.3	THE STUFF OF LIFE	5
	Organisms Are Constructed from Four Great Classes of Macromolecules	6
	Nucleic Acids and Proteins Are Polymer Languages with Different Alphabets	7
1.4	MODEL BUILDING IN BIOLOGY	9
1.4.1	Models as Idealizations	9
	Biological Stuff Can Be Idealized Using Many	11
1.4.2	Cartoons and Models	16
	Biological Cartoons Select Those Features of the	
	Problem Thought to Be Essential	16
	Mathematicizing the Cartoons	19
1.5	QUANTITATIVE MODELS AND THE POWER	
	OF IDEALIZATION	20
1.5.1	On the Springiness of Stuff The Teelbox of Fundamental Physical Models	21
1.5.2	The Unifying Ideas of Biology	23
1.5.4	Mathematical Toolkit	25
1.5.5	The Role of Estimates	26
1.5.7	On Being Wrong Rules of Thumb: Biology by the Numbers	30
1.6		32
1.7		32
1.0	REFERENCES	11
Chap	ter 2 What and Where: Construction	
Plans	for Cells and Organisms	35
2.1	AN ODE TO E. COLI	35
2.1.1	The Bacterial Standard Ruler	37

The Bacterial Standard Ruler	37
The Bacterium E. coli Will Serve as Our	
Standard Ruler	37
Taking the Molecular Census	38
The Cellular Interior Is Highly Crowded, with Mean	
Spacings Between Molecules That Are Comparable	
to Molecular Dimensions	48
Looking Inside Cells	49
Where Does E. coli Fit?	51
Biological Structures Exist Over a Huge Range of	
Scales	51
	The Bacterial Standard Ruler The Bacterium <i>E. coli</i> Will Serve as Our Standard Ruler Taking the Molecular Census The Cellular Interior Is Highly Crowded, with Mean Spacings Between Molecules That Are Comparable to Molecular Dimensions Looking Inside Cells Where Does <i>E. coli</i> Fit? Biological Structures Exist Over a Huge Range of Scales

2.2	CELLS AND STRUCTURES WITHIN THEM	52
2.2.1	Cells: A Rogue's Gallery	52
	and with a Huge Range of Functions	52
	Cells from Humans Have a Huge Diversity of	
2 2 2	Structure and Function	57
2.2.2	Macromolecular Assemblies: The Whole is Greater	29
0.0.0	than the Sum of the Parts	63
	Macromolecules Come Together to Form	62
	Assemblies Helical Motifs Are Seen Repeatedly in Molecular	05
	Assemblies	64
	Macromolecular Assemblies Are Arranged in	
224	Superstructures	65
2.2.4	The Molecular Architecture of Cells: From Protein	00
	Data Bank (PDB) Files to Ribbon Diagrams	69
	Macromolecular Structure Is Characterized	60
	Chemical Groups Allow Us to Classify Parts of the	05
	Structure of Macromolecules	70
23	TELESCOPING UP IN SCALE: CELLS DON'T CO IT	
2.5	ALONE	72
2.3.1	Multicellularity as One of Evolution's Great Inventions	73
	Bacteria Interact to Form Colonies such as Biofilms	73
	discoideum	75
	Multicellular Organisms Have Many Distinct	
222	Communities of Cells	76
2.3.2	Networks	77
	One Class of Multicellular Structures is the Epithelial	
	Tissues Are Collections of Cells and Extracellular	//
	Matrix	77
	Nerve Cells Form Complex, Multicellular	70
233	Complexes Multicellular Organisms	78
2.3.5	Cells Differentiate During Development Leading to	
	Entire Organisms	78
	The Cells of the Nematode Worm, <i>Caenorhabditis</i>	
	Picture of the Organism	80
	Higher-Level Structures Exist as Colonies of	
	Organisms	82
2.4	SUMMARY AND CONCLUSIONS	83
2.5	PROBLEMS	83
2.6	FURTHER READING	84
2.1	KEFEKENCES	85
Chapt	er 3 When: Stopwatches at	
Many	Scales	87
3.1	THE HIERARCHY OF TEMPORAL SCALES	87
3.1.1	The Pageant of Biological Processes	89
	BIOIOGICAL Processes Are Characterized by a Huge	80
		00

3.1.2 The Evolutionary Stopwatch

3.1.3	The Cell Cycle and the Standard Clock The <i>E. coli</i> Cell Cycle Will Serve as Our Standard	99
3.1.4	Stopwarcn Three Views of Time in Biology	105
3.2 3.2.1	PROCEDURAL TIME The Machines (or Processes) of the Central Dogma The Central Dogma Describes the Processes	106 107
	Chemically	107
3.2.2	by Sophisticated Molecular Machines Clocks and Oscillators	108 110
	Dictated by an Internal Clock	111
	Time Everyday	111
3.3	RELATIVE TIME	114
3.3.1	Checkpoints and the Cell Cycle The Eukaryotic Cell Cycle Consists of Four Phases	115
3.3.2	Measuring Relative Time	117
	Whose Expression Is Interrelated The Formation of the Bacterial Flagellum Is	117
	Intricately Organized in Space and Time	119
3.3.3	Killing the Cell: The Life Cycles of Viruses Viral Life Cycles Include a Series of Self-Assembly	120
3.3.4	The Process of Development	121
3.4	MANIPULATED TIME	125
3.4.1	Chemical Kinetics and Enzyme Turnover	125
3.4.2	Beating the Diffusive Speed Limit Diffusion Is the Random Motion of Microscopic Particles in	126
	Solution	127
	Diffusion Times Depend upon the Length Scale Diffusive Transport at the Synaptic Junction Is the Dynamical Mechanism for Neuronal Communication	127
	Molecular Motors Move Cargo over Large Distances in a Directed Way	129
	Membrane-Bound Proteins Transport Molecules	
	from One Side of a Membrane to the Other	130
3.4.3	Beating the Replication Limit	131
3.4.4	Eggs and Spores: Planning for the Next Generation	132
3.5	SUMMARY AND CONCLUSIONS	133
3.6	PROBLEMS	133
3.7	FURTHER READING	136
3.8	REFERENCES	136
Chant	or 4 Who: "Place the Little Poseties"	127
Chapt	er 4 who: bless the Little beastles	137
4.1	CHOOSING A GRAIN OF SAND Medern Constists Regan with the lise of Boos as a	137
	Modern Genetics Began with the Use of Peas as a Model System	138
4.1.1	Biochemistry and Genetics	138
1 2		142
4.2.1	Hemoglobin, Receptor-Ligand Binding, and the	143
	The Binding of Oxygen to Hemoglobin Has Served as a Model System for Ligand-Receptor Interactions	143
	More Generally Quantitative Analysis of Hemoglobin Is Based upon	143
	Measuring the Fractional Occupancy of the Oxygen-Binding Sites as a Function of Oxygen	
	Pressure	144
4.2.2	Hemoglobin and the Origins of Structural Biology	144
	The Study of the Mass of Hemoglobin Was Central in	145
	the Development of Centinugation	145

	Structural Biology Has Its Roots in the	145
4.2.3	Hemoglobin and Molecular Models of Disease	146
4.2.4		147
4.3 4.3.1	BACTERIOPHAGES AND MOLECULAR BIOLOGY Bacteriophages and the Origins of Molecular Biology Pactoriophages Have Sometimes Been Called the	147
	"Hydrogen Atoms of Biology" Experiments on Phages and Their Bacterial Hosts	148
	Demonstrated That Natural Selection Is Operative in	140
	The Hershey–Chase Experiment Both Confirmed the Nature of Genetic Material and Elucidated One of the	140
	Mechanisms of Viral DNA Entry into Cells	149
	Experiments on Phage 14 Demonstrated the Sequence Hypothesis of Collinearity of DNA and Proteins	150
	The Triplet Nature of the Genetic Code and DNA	1 5 0
	Sequencing Were Carried Out on Phage Systems Phages Were Instrumental in Elucidating the	150
	General Ideas about Gene Regulation Were Learned	151
	from the Study of Viruses as a Model System	152
4.3.2	Many Single- Molecule Studies of Molecular Motors	155
	Have Been Performed on Motors from Bacteriophages	154
4.4	A TALE OF TWO CELLS: E. COLI AS A MODEL SYSTEM	154
4.4.1	Bacteria and Molecular Biology	154
4.4.2	The Hypothesis of Conservative Replication Has	150
	Falsifiable Consequences	156
4.4.3	Synthesis of DNA, mRNA, and Proteins The <i>lac</i> Operon as the "Hydrogen Atom" of Genetic	157
	Circuits	157
	Genetic Circuits in General The <i>lac</i> Operon Is a Genetic Network That Controls	157
	the Production of the Enzymes Responsible for Digesting the Sugar Lactose	158
4.4.4	Signaling and Motility: The Case of Bacterial Chemotaxis	159
	E. COII Has Served as a Model System for the Analysis of Cell Motility	159
4.5	YEAST: FROM BIOCHEMISTRY TO THE CELL CYCLE Yeast Has Served as a Model System Leading to Insights in Contexts Ranging from Vitalism to the Eurochoning of Enzymes to Eukanotic Cene	161
	Regulation	161
4.5.1	Yeast and the Rise of Biochemistry	162
4.5.2	Deciding Which Way Is Up: Yeast and Polarity	164
4.5.4	Dissecting Membrane Traffic	166
4.5.5		107
4.6 4.6 1	FLIES AND MODERN BIOLOGY Flies and the Rise of Modern Cenetics	170
4.0.1	Drosophila melanogaster Has Served as a Model System for Studies Ranging from Genetics to	170
	Development to the Functioning of the Brain and Even Behavior	170
4.6.2	How the Fly Got His Stripes	171
4.7		173
4.8.1	Specialists and Experts	174
4.8.2	The Squid Giant Axon and Biological Electricity There Is a Steady-State Potential Difference Across	175
	the Membrane of Nerve Cells Nerve Cells Propagate Electrical Signals and Use	176
4.8.3	Them to Communicate with Each Other Exotica Toolkit	176 178

CONTENTS IN DETAIL

XX

4.9	SUMMARY AND CONCLUSIONS	179
4.10	PROBLEMS	179
4.11	FURTHER READING	181
4.12	REFERENCES	183

PART 2 LIFE AT REST 185

Chap	ter 5 Mechanical and Chemical	
Equil	ibrium in the Living Cell	187
5.1	ENERGY AND THE LIFE OF CELLS	187
5.1.1	The Interplay of Deterministic and Thermal Forces	189
	Thermal Jostling of Particles Must Be Accounted for in Biological Systems	189
5.1.2	Constructing the Cell: Managing the Mass and Energy Budget of the Cell	190
5.2	BIOLOGICAL SYSTEMS AS MINIMIZERS	200
5.2.1	Equilibrium Models for Out of Equilibrium Systems Equilibrium Models Can Be Used for Nonequilibrium Problems if Certain Processes Happen Much Faster Than Others	200
5.2.2	Proteins in "Equilibrium"	202
27.0 1994 1985	Protein Structures are Free-Energy Minimizers	203
5.2.3 5.2.4	Cells in "Equilibrium" Mechanical Equilibrium from a Minimization	204
	Perspective	204
	The Mechanical Equilibrium State is Obtained by Minimizing the Potential Energy	204
5.3	THE MATHEMATICS OF SUPERLATIVES	209
5.3.1	The Mathematization of Judgement: Functions and Functionals	209
	Functionals Deliver a Number for Every Function	210
5.3.2	The Calculus of Superlatives	211
	Finding the Maximum and Minimum Values of a Function Requires That We Find Where the Slope of the Function Equals Zero	211
5.4	CONFIGURATIONAL ENERGY	214
	In Mechanical Problems, Potential Energy	
	Determines the Equilibrium Structure	214
5.4.1	Hooke's Law: Actin to Lipids There is a Linear Relation Between Force and	216
	Extension of a Beam	216
	The Energy to Deform an Elastic Material is a	
	Quadratic Function of the Strain	217
5.5	STRUCTURES AS FREE-ENERGY MINIMIZERS	219
	The Entropy is a Measure of the Microscopic	-
5 5 1	Degeneracy of a Macroscopic State	219
2.2.1	Hydrophobicity Results from Depriving Water	222
	Molecules of Some of Their Configurational	
	Entropy	222
	Hydrophobicity	224
	When in Water, Hydrocarbon Tails on Lipids Have an	
	Entropy Cost	225
5.5.2	Thermal and Chemical Equilibrium are Obtained by	223
	Maximizing the Entropy	225
5.5.3	Departure from Equilibrium and Fluxes	227
5.5.4	Structure as a Competition	228
	of as an Alternative Formulation of Entropy	
	Maximization	228
5.5.5	An Ode to ΔG	230
	Energy and Entropy	230

5.6	SUMMARY AND CONCLUSIONS	231
5.7	APPENDIX: THE EULER–LAGRANGE EQUATIONS, FINDING THE SUPERLATIVE	232
	Finding the Extrema of Functionals Is Carried Out Using the Calculus of Variations	232
	The Euler-Lagrange Equations Let Us Minimize Functionals by Solving Differential Equations	232
5.8	PROBLEMS	233
5.9	FURTHER READING	235
5.10	REFERENCES	236
Chapt	er 6 Entropy Rules!	237
6.1	THE ANALYTICAL ENGINE OF STATISTICAL	
	MECHANICS	237
	Determined by Their Energy	240
6.1.1	A First Look at Ligand–Receptor Binding	241
6.1.2	The Statistical Mechanics of Gene Expression: RNA	244
	A Simple Model of Gene Expression Is to Consider	
	the Probability of RNA Polymerase Binding at the	245
	Most Cellular RNA Polymerase Molecules Are Bound	245
	to DNA	245
	The Binding Probability of RNA Polymerase to Its	
	Polymerase Molecules and the Binding Energy	247
6.1.3	Classic Derivation of the Boltzmann Distribution	248
	The Boltzmann Distribution Gives the Probability of Microstates for a System in Contact with a Thermal	
	Reservoir	248
6.1.4	Boltzmann Distribution by Counting	250
	Different Ways of Partitioning Energy Among	250
615	Particles Have Different Degeneracies	250
0.1.5	Maximizing the Entropy Corresponds to Making a	233
	Best Guess When Faced with Limited Information	253
	Entropy Maximization Can Be Used as a Tool for	255
	The Boltzmann Distribution is the Maximum Entropy	, , , , , , , , , , , , , , , , , , , ,
	Distribution in Which the Average Energy is	
	Prescribed as a Constraint	258
6.2	ON BEING IDEAL	259
6.2.1	Average Energy of a Molecule in a Gas	259
	The Ideal Gas Entropy Reflects the Freedom to	
622	Rearrange Molecular Positions and Velocities	259
0.2.2	The Chemical Potential of a Dilute Solution Is a	202
	Simple Logarithmic Function of the Concentration	262
6.2.3	Osmotic Pressure as an	264
	Entropic Spring Osmotic Pressure Arises from Entropic Effects	264
	Viruses, Membrane-Bound Organelles, and Cells	204
	Are Subject to Osmotic Pressure	265
	Osmotic Forces Have Been Used to Measure the	266
	interstrand interactions of DNA	200
6.3	THE CALCULUS OF EQUILIBRIUM APPLIED: LAW OF	
631	MASS ACTION	267
0.5.1	Equilibrium Constants are Determined by Entropy	207
	Maximization	267
6.4	APPLICATIONS OF THE CALCULUS OF FOUN IRPLUM	270
6.4.1	A Second Look at Ligand–Receptor Rinding	270
6.4.2	Measuring Ligand-Receptor Binding	272
6.4.3	Beyond Simple Ligand-Receptor Binding: The Hill	
6.4.4	ATP Power	2/3
	The Energy Released in ATP Hydrolysis Depends	2/4
	Upon the Concentrations of Reactants and Products	275

CONTENTS IN DETAIL xxi

6.5	SUMMARY AND CONCLUSIONS	276
6.6	PROBLEMS	276
6.7	FURTHER READING	278
68	REFERENCES	278

Chapter 7 Two-State Systems: From Ion **Channels to Cooperative Binding**

.

7.1 7.1.1	MACROMOLECULES WITH MULTIPLE STATES The Internal State Variable Idea The State of a Protein or Nucleic Acid Can Be	28 28
	Variable	282
7.1.2	Ion Channels as an Example of Internal State Variables	286
	The Open Probability $\langle \sigma \rangle$ of an Ion Channel Can Be Computed Using Statistical Mechanics	287
7.2	STATE VARIABLE DESCRIPTION OF BINDING	289
7.2.1	The Gibbs Distribution: Contact with a Particle Reservoir The Gibbs Distribution Gives the Probability of	289
	Microstates for a System in Contact with a Thermal	
7 7 7	and Particle Reservoir	289
7.2.3	Phosphorylation as an Example of Two Internal	29
	State Variables	292
	Between Active and Inactive States	293
	Two-Component Systems Exemplify the Use of	
721	Phosphorylation in Signal Transduction	29
7.2.4	The Binding Affinity of Oxygen for Hemoglobin	290
	Depends upon Whether or Not Other Oxygens Are	201
	Already Bound A Toy Model of a Dimeric Hemoglobin (Dimoglobin)	298
	Illustrate the Idea of Cooperativity	298
	The Monod–Wyman–Changeux (MWC) Model Provides a Simple Example of Cooperative Binding	300
	Statistical Models of the Occupancy of Hemoglobin	
	Can Be Written Using Occupation Variables	301
	Complex Binding Models for Hemoglobin	301
7 7		
7.5	CHANNELS AND THE MWC MODEL	305
7.4	SUMMARY AND CONCLUSIONS	308
7.5	PROBLEMS	308
7.6	FURTHER READING	310
7.7	REFERENCES	310
CI		
Chap	ter 8 Random Walks and the	
Struc	ture of Macromolecules	311
8.1	WHAT IS A STRUCTURE: PDB OR R _G ?	311
8.1.1	Structure	312
	PDB Files Reflect a Deterministic Description of	512
	Macromolecular Structure	312
	Statistical Descriptions of Structure Emphasize	
	Coordinates	312
82		217
0.2	Random Walk Models of Macromolecules View	514
	Them as Rigid Segments Connected by Hinges	312

8.2.1 A Mathematical Stupor In Random Walk Models of Polymers, Every Macromolecular Configuration Is Equally Probable The Mean Size of a Random Walk Macromolecule Scales as the Square Root of the Number of Segments, \sqrt{N}

9.2.3

Salt and Binding

276		The Probability of a Given Macromolecular State	215
276		Depends Upon its Microscopic Degeneracy Entropy Determines the Flastic Properties of	315
278		Polymer Chains	316
210		The Persistence Length Is a Measure of the Length Scale Over Which a Polymer Remains Roughly	
		Straight	319
281	8.2.2	How Big Is a Genome?	321
281	0.2.5	Genetic Maps and Physical Maps of Chromosomes	522
281		Describe Different Aspects of Chromosome	300
		Different Structural Models of Chromatin Are	522
282		Characterized by the Linear Packing Density	373
286		Spatial Organization of Chromosomes Shows	525
287		Elements of Both Randomness and Order	324
207		Chromosome Territories Have Been Observed	525
289		in Bacterial Cells	327
289		Explored Using Models of Polymer Confinement	
	974	and Tethering	328
289	0.2.4	Regulation	333
291		The Lac Repressor Molecule Acts Mechanistically	334
292		Looping of Large DNA Fragments Is Dictated	774
293		by the Difficulty of Distant Ends Finding Each Other	334
205		the Geometry of Packing of Entire Genomes	
293		in Cells	336
	8.3	THE NEW WORLD OF SINGLE-MOLECULE	
298		MECHANICS Single-Molecule Measurement Techniques Lead to	337
208		Force Spectroscopy	337
230	8.3.1	Force-Extension Curves: A New Spectroscopy Different Macromolecules Have Different Force	339
300		Signatures When Subjected to Loading	339
301	8.3.2	Random Walk Models for Force-Extension Curves The Low-Force Regime in Force-Extension Curves	340
301		Can Be Understood Using the Random Walk Model	340
101	8.4	PROTEINS AS RANDOM WALKS	344
305	8.4.1	Compact Random Walks and the Size of Proteins	345
308		Estimate of Their Size	345
308	8.4.2	Hydrophobic and Polar Residues: The HP Model	346
310		Classes: Hydrophobic and Polar	_ 346
510	8.4.3	HP Models of Protein Folding	348
	8.5	SUMMARY AND CONCLUSIONS	351
311	8.6	PROBLEMS	351
311	8.7	REFERENCES	353
312			555
212	Chap	ter 9 Electrostatics for Salty	
512	Solut	ions	355
212	9.1	WATER AS LIFE'S AETHER	355
512	9.2	THE CHEMISTRY OF WATER	358
312	9.2.1	pH and the Equilibrium Constant Dissociation of Water Molecules Poffects a	358
312		Competition Between the Energetics of Binding	
313	022	and the Entropy of Charge Liberation	358
313	9.2.2	The Charge State of Biopolymers Depends	228
		upon the pH of the Solution	359

Different Amino Acids Have Different Charge States

CONTENTS IN DETAIL xxii

0.3	ELECTROSTATICS FOR SALTY SOLUTIONS	360
9.5	An Electrostatics Primer	361
9.5.1	A Charge Distribution Produces an Electric Field Throughout Space	362
	The Flux of the Electric Field Measures the Density of Electric Field Lines	363
	The Electrostatic Potential Is an Alternative Basis for Describing the Electrical State of a System	364
	There Is an Energy Cost Associated With Assembling a Collection of Charges	367
	The Energy to Liberate lons from Molecules Can Be Comparable to the Thermal Energy	368
9.3.2	The Charged Life of a Protein	369
9.3.3	The Notion of Screening: Electrostatics in Salty	
	Solutions	370
	lons in Solution Are Spatially Arranged to Shield Charged Molecules Such as DNA	370
	The Size of the Screening Cloud Is Determined by a Balance of Energy and Entropy of the	
	Surrounding lons	371
9.3.4	The Poisson-Boltzmann Equation	374
	The Distribution of Screening lons Can Be Found	
	by Minimizing the Free Energy	374
	The Screening Charge Decays Exponentially Around	
	Macromolecules in Solution	376
9.3.5	Viruses as Charged Spheres	377
9.4	SUMMARY AND CONCLUSION	379
9.5	PROBLEMS	380
9.6	FURTHER READING	382
9.7	REFERENCES	382

Chapter 10 Beam Theory: Architecture for Cells and Skeletons

10.1	BEAMS ARE EVERYWHERE: FROM FLAGELLA TO THE CYTOSKELETON	383
	One-Dimensional Structural Elements Are the Basis of Much of Macromolecular and Cellular	202
	Architecture	383
10.2	GEOMETRY AND ENERGETICS OF BEAM	
	DEFORMATION	385
10.2.1	Stretch, Bend, and Twist	385
	and Twisting	385
	A Bent Beam Can Be Analyzed as a Collection of	
	Stretched Beams	385
	The Energy Cost to Deform a Beam Is a Quadratic	207
	Function of the Strain	387
10.2.2	Beam Theory and the Persistence Length: Stiffness	200
	Thermal Eluctuations Tend to Randomize the	209
	Orientation of Biological Polymers	389
	The Persistence Length Is the Length Over Which a	
	Polymer Is Roughly Rigid	390
	The Persistence Length Characterizes the	
	Correlations in the Tangent Vectors at Different	
	Positions Along the Polymer	390
	The Persistence Length Is Obtained by Averaging	
	Over All Configurations of the Polymer	391
10.2.3	Elasticity and Entropy: The Worm-Like Chain	392
	The Worm-Like Chain Model Accounts for Both	
	the Elastic Energy and Entropy of Polymer	202
	Chains	392
103	THE MECHANICS OF TRANSCRIPTIONAL	
. 0.5	REGULATION: DNA LOOPING REDUX	394
10.3.1	The <i>lac</i> Operon and Other Looping Systems	394
	Transcriptional Regulation Can Be Effected	
	by DNA Looping	395
10.3.2	Energetics of DNA Looping	395
10.3.3	Putting It All Together: The J-Factor	396

10.4	DNA PACKING: FROM VIRUSES TO EUKARYOTES The Packing of DNA in Viruses and Cells Requires	398
	Enormous Volume Compaction	208
10 4 1	The Brohlem of Viral DNA Backing	100
10.4.1	Structured Diele piete Lleve Determined the Structure	400
	Structural Biologists Have Determined the Structure	400
	of Many Parts In the Viral Parts List	400
	The Packing of DNA in Viruses Results in a	
	Free-Energy Penalty	402
	A Simple Model of DNA Packing in Viruses Uses the	
	Elastic Energy of Circular Hoops	403
	DNA Self-Interactions Are also Important in	
	Establishing the Free Energy Associated with DNA	
	Packing in Viruses	404
	DNA Packing in Viruses Is a Competition Between	
	Elastic and Interaction Energies	406
1042	Constructing the Nucleosome	407
10.1.2	Nucleosome Formation Involves Both Elastic	107
	Deformation and Interactions Retween Histories	
	and DNA	408
10 4 3	Equilibrium Accessibility of Nucleosomal DNA	100
10.4.5	The Equilibrium Accessibility of Sites within the	405
	Nucleosome Depends upon How Far They Are	
	from the Unwrapped Ends	100
	nom the onwrapped ends	409
10.5	THE CYTOSKELETON AND BEAM THEORY	413
	Eukarvotic Cells Are Threaded by Networks	
	of Filaments	413
10.5.1	The Cellular Interior: A Structural Perspective	414
101511	Prokarvotic Cells Have Proteins Analogous to the	
	Fukarvotic Cytoskeleton	416
1052	Stiffness of Cytoskeletal Filaments	416
10.3.2	The Cytoskeleton Can Be Viewed as a Collection	410
	of Elastic Boams	416
10 5 2	Cutockoletal Ruckling	410
10.5.5	A Peam Subject to a Large Enough Force Will Puckle	419
10 5 4	A beam subject to a Large Enough Force will buckle	419
10.5.4	Estimate of the Buckling Force	420
	Beam Buckling Occurs at Smaller Forces for Longer	420
	Beams	420
10.6	SUMMARY AND CONCLUSIONS	421
10.7	APPENDIX: THE MATHEMATICS OF THE WORM-LIKE	
10.7	CHAIN	421
10.0		434
10.0		424
10.9	FURTHER READING	426
10.10	REFERENCES	426
	100 WT // YW 500 YW 300 WH 500 WT 970 WH 500	

Chapter 11 Biological Membranes: Life in Two Dimensions 427

11.1	THE NATURE OF BIOLOGICAL MEMBRANES	427
11.1.1	Cells and Membranes	427
	Cells and Their Organelles Are Bound by Complex	
	Membranes	427
	Electron Microscopy Provides a Window on Cellular	
	Membrane Structures	429
11.1.2	The Chemistry and Shape of Lipids	431
	Membranes Are Built from a Variety of Molecules	
	That Have an Ambivalent Relationship with Water	431
	The Shapes of Lipid Molecules Can Induce	
	Spontaneous Curvature on Membranes	436
11.1.3	The Liveliness of Membranes	436
	Membrane Proteins Shuttle Mass Across Membranes	437
	Membrane Proteins Communicate Information	
	Across Membranes	439
	Specialized Membrane Proteins Generate ATP	439
	Membrane Proteins Can Be Reconstituted in Vesicles	439
11.2	ON THE SPRINGINESS OF MEMBRANES	440
11.2.1	An Interlude on Membrane Geometry	440
	Membrane Stretching Geometry Can Be Described	
	by a Simple Area Function	441
	Membrane Bending Geometry Can Be Described by	
	a Simple Height Function, $h(x, y)$	441

CONTENTS IN DETAIL xxiii

Membrane Compression Geometry Can Be Described by a Simple Thickness Function, w(x,y)Membrane Shearing Can Be Described by an Angle Variable, θ 11.2.2 Free Energy of Membrane Deformation There Is a Free-Energy Penalty Associated with Changing the Area of a Lipid Bilayer There Is a Free-Energy Penalty Associated with Bending a Lipid Bilayer There Is a Free-Energy Penalty for Changing the Thickness of a Lipid Bilayer There Is an Energy Cost Associated with the Gaussian Curvature STRUCTURE, ENERGETICS, AND FUNCTION OF VESICLES Measuring Membrane Stiffness 11.3.1 Membrane Elastic Properties Can Be Measured by Stretching Vesicles Membrane Pulling 11.3.2 11.3.3 Vesicles in Cells Vesicles Are Used for a Variety of Cellular Transport Processes There Is a Fixed Free-Energy Cost Associated with Spherical Vesicles of All Sizes Vesicle Formation Is Assisted by Budding Proteins There Is an Energy Cost to Disassemble Coated

11.3

Vesicles

444

444

445

445

446

446

447

448

448

448

450

453

453

455

456

458

476

479

479

481

FUSION AND FISSION 458 11.4 11.4.1 Pinching Vesicles: The Story of Dynamin 459 11.5 MEMBRANES AND SHAPE 462 11.5.1 The Shapes of Organelles 462 The Surface Area of Membranes Due to Pleating Is So Large That Organelles Can Have Far More Area than the Plasma Membrane 463 11.5.2 The Shapes of Cells 465 The Equilibrium Shapes of Red Blood Cells Can Be Found by Minimizing the Free Energy 466 THE ACTIVE MEMBRANE 11.6 467 11.6.1 Mechanosensitive Ion Channels and Membrane Elasticity 467 Mechanosensitive Ion Channels Respond to Membrane Tension 467 11.6.2 Elastic Deformations of Membranes Produced by Proteins 468 Proteins Induce Elastic Deformations in the Surrounding Membrane 468 Protein-Induced Membrane Bending Has an Associated Free-Energy Cost 469 11.6.3 One-Dimensional Solution for MscL 470 Membrane Deformations Can Be Obtained by Minimizing the Membrane Free Energy 470 The Membrane Surrounding a Channel Protein Produces a Line Tension 472 475

11.7 SUMMARY AND CONCLUSIONS 11.8 PROBLEMS 11.9 FURTHER READING 11.10 REFERENCES

PART 3 LIFE IN MOTION

Chap	ter 12 The Mathematics of Water	483
12.1	PUTTING WATER IN ITS PLACE	483
12.2	HYDRODYNAMICS OF WATER AND OTHER FLUIDS	484

12.2.1	Water as a Continuum Though Fluids Are Composed of Molecules It Is	484
	Possible to Treat Them as a Continuous Medium	484
12.2.2	What Can Newton Tell Us?	485
	Gradients in Fluid Velocity Lead to Shear Forces	485
12.2.3	F = ma for Fluids	486
12.2.4	The Newtonian Fluid and the Navier-Stokes	
	Equations	490
	The Velocity of Fluids at Surfaces Is Zero	491
12.3	THE RIVER WITHIN: FLUID DYNAMICS OF BLOOD	491
12.3.1	Boats in the River: Leukocyte Rolling and	
	Adhesion	493
12.4	THE LOW REYNOLDS NUMBER WORLD	495
12.4.1	Stokes Flow: Consider a Spherical Bacterium	495
12.4.2	Stokes Drag in Single-Molecule Experiments	498
	Stokes Drag Is Irrelevant for Optical Tweezers	
	Experiments	498
12.4.3	Dissipative Time Scales and the Reynolds	
1744	Number	499
12.4.4	Swim Too	500
	Reciprocal Deformation of the Swimmer's Body	200
	Does Not Lead to Net Motion at Low Reynolds	
	Number	502
12.4.5	Centrifugation and Sedimentation: Spin It Down	502
12.5	SUMMARY AND CONCLUSIONS	504
12.6	PROBLEMS	505
12.7	FURTHER READING	507
12.8	REFERENCES	507

Chapter 13 A Statistical View of Biological Dynamics

13.1	DIFFUSION IN THE CELL	509
13.1.1	Active versus Passive Transport	510
13.1.2	Biological Distances Measured in Diffusion Times The Time It Takes a Diffusing Molecule to Travel a Distance / Grows as the Square	511
	of the Distance	512
	Diffusion Is Not Effective Over Large Cellular	5.2
	Distances	512
13.1.3	Random Walk Redux	514
13.2	CONCENTRATION FIELDS AND DIFFUSIVE DYNAMICS	515
	Fick's Law Tells Us How Mass Transport Currents	
	Arise as a Result of Concentration Gradients	517
	The Diffusion Equation Results from Fick's Law and	
	Conservation of Mass	518
13.2.1	Diffusion by Summing Over Microtrajectories	518
13.2.2	Solutions and Properties of the Diffusion Equation	524
	Concentration Profiles Broaden Over Time in a Very	
	Precise Way	524
13.2.3	FRAP and FCS	525
13.2.4	Drunks on a Hill: The Smoluchowski Equation	529
13.2.5	The Einstein Relation	530
12.2		F 3 3
13.3	Medeline the Cell Constinue Bushlow	532
13.3.1	Restant Recenters Result is a Pate of Untrilia 4. De	532
	Perfect Receptors Result in a Rate of Uptake $4\pi Dc_0 a$	533
	A Distribution of Receptors is Almost as Good as a	534
	Perfectly Absorbing Sphere	534
	Real Receptors Are Not Always Uniformly Distributed	536
13.3.2	A "Universal" Rate for Diffusion-Limited	
	Chemical Reactions	537
13.4	SUMMARY AND CONCLUSIONS	538
13.5	PROBLEMS	539

		540
3.6	PERFICES	540
13.7	KEPERLINCES	510
Chapt	ter 14 Life in Crowded and	
Disor	dered Environments	543
1 4 1	CROWDING, LINKAGE, AND ENTANGLEMENT	543
14.1	The Cell Is Crowded	544
14.1.2	Macromolecular Networks: The Cytoskeleton	
	and Beyond	545
14.1.3	Crowding on Membranes	546
14.1.4	Consequences of Crowding	547
	Crowding Alters Biochemical Equilibria	548
	Crowding Alters the Kinetics within Cells	548
		550
14.2	Crowding and Binding	550
4.2.1	Lattice Models of Solution Provide a Simple	220
	Picture of the Role of Crowding in Biochemical	
	Equilibria	550
14.2.2	Osmotic Pressures in Crowded Solutions	552
	Osmotic Pressure Reveals Crowding Effects	552
14.2.3	Depletion Forces: Order from Disorder	554
	The Close Approach of Large Particles Excludes	
	Smaller Particles Between Them, Resulting in an	554
	Entropic Force	554
	Depletion Forces Can induce Entropic Ordering!	559
14.2.4	Excluded Volume Leads to an Effective Repulsion	222
	Retween Molecules	559
	Self-avoidance Between the Monomers of a Polymer	335
	Leads to Polymer Swelling	561
14.2.5	Case Study in Crowding: How to Make a Helix	563
14.2.6	Crowding at Membranes	565
14.3	CROWDED DYNAMICS	566
14.3.1	Crowding and Reaction Rates	566
	than the Diffusion Limit Using Substrate	
	Channeling	566
	Protein Folding Is Facilitated by Chaperones	567
1432	Diffusion in Crowded Environments	567
11.5.2		
14.4	SUMMARY AND CONCLUSIONS	569
14.5	PROBLEMS	569
14.6	FURTHER READING	570
14.7	REFERENCES	571

Chapter 15 Rate Equations and Dynamics in the Cell

15.1	BIOLOGICAL STATISTICAL DYNAMICS: A FIRST	
	LOOK	573
15.1.1	Cells as Chemical Factories	574
15.1.2	Dynamics of the Cytoskeleton	575
15.2	A CHEMICAL PICTURE OF BIOLOGICAL DYNAMICS	579
15.2.1	The Rate Equation Paradigm	579
	Chemical Concentrations Vary in Both Space and	
	Time	580
	Rate Equations Describe the Time Evolution of	
	Concentrations	580
15.2.2	All Good Things Must End	581
	Macromolecular Decay Can Be Described by a	
	Simple, First-Order Differential Equation	581
15.2.3	A Single-Molecule View of Degradation: Statistical	
	Mechanics Over Trajectories	582
	Molecules Fall Apart with a Characteristic Lifetime	582
	Decay Processes Can Be Described with Two-State	
	Trajectories	583

15.2.4	Decay of One Species Corresponds to Growth in the Number of a Second Species Bimolecular Reactions	585 586
	of a Given Species	586
	Equilibrium Constants Have a Dynamical	
	Interpretation in Terms of Reaction Rates	588
15.2.5	Dynamics of Ion Channels as a Case Study	58 9
	Rate Equations for Ion Channels Characterize the	
	Time Evolution of the Open and Closed Probability	590
15.2.6	Rapid Equilibrium	591
15.2.7	Michaelis-Menten and Enzyme Kinetics	596
15.2		
15.5		500
15 2 1	The Eulerwatic Cutoskalaton	500
15.5.1	The Eukaryolic Cyloskeleton	722
	Always Under Construction	599
1522	The Curious Case of the Pacterial Cytoskeleton	600
15.5.2	The Curious Case of the Bacterial Cytoskeleton	000
15.4	SIMPLE MODELS OF CYTOSKELETAL POLYMERIZATION	602
50000 C	The Dynamics of Polymerization Can Involve Many	
	Distinct Physical and Chemical Effects	603
15.4.1	The Equilibrium Polymer	604
	Equilibrium Models of Cytoskeletal Filaments	
	Describe the Distribution of Polymer Lengths for	
	Simple Polymers	604
	An Equilibrium Polymer Fluctuates in Time	606
15.4.2	Rate Equation Description of Cytoskeletal	
	Polymerization	609
	Polymerization Reactions Can Be Described by Rate	
	Equations	609
	The Time Evolution of the Probability Distribution	
	$P_n(t)$ Can Be Written Using a Rate Equation	610
	Rates of Addition and Removal of Monomers Are	
	Often Different on the Two Ends of Cytoskeletal	
	Filaments	612
15.4.3	Nucleotide Hydrolysis and Cytoskeletal	C1 4
	Polymerization	614
	AIP Hydrolysis Sculpts the Molecular Interface,	
	Cytoskeletal Filaments	614
1 5 4 4	Dynamic Instability: A Tay Model of the Can	615
15.4.4	A Toy Model of Dynamic Instability Assumes That	015
	Catastrophe Occurs When Hydrolyzed Nucleotides	
	Are Present at the Growth Front	616
15.5	SUMMARY AND CONCLUSIONS	618
15.6	PROBLEMS	619
15.7	FURTHER READING	621
15.8	REFERENCES	621
15.0	NET ENERGES	
Chapt	ter 16 Dynamics of Molecular	
Moto	rs i	623
16.1	THE DYNAMICS OF MOLECULAR MOTORS: LIFE IN	622
1011	THE NOISY LANE	623
10.1.1	Iransiational Motors: Beating the Diffusive Speed	625
	The Motion of Eukanyotic Cilia and Elagolla is Driven	025
	by Translational Motors	628
	Muscle Contraction Is Mediated by Myosin Motors	630
16.1.2	Rotary Motors	634
		007

- by Translational Motors
 620

 Muscle Contraction Is Mediated by Myosin Motors
 630

 16.1.2
 Rotary Motors
 634

 16.1.3
 Polymerization Motors: Pushing by Growing
 637

 16.1.4
 Translocation Motors: Pushing by Pulling
 638

 16.2
 RECTIFIED BROWNIAN MOTION AND MOLECULAR MOTORS
 639

 16.2.1
 The Random Walk Yet Again
 640
- 16.2.1 The Random Walk Yet Again 640 Molecular Motors Can Be Thought of as Random Walkers 640

16.2.2	The One-State Model The Dynamics of a Molecular Motor Can Be Written	641
	Using a Master Equation The Driven Diffusion Equation Can Be Transformed	642
	into an Ordinary Diffusion Equation	644
16.2.3	Motor Stepping from a Free-Energy Perspective	647
16.2.4	The Dynamics of a Two-State Motor Is Described	651
	Internal States Reveal Themselves in the Form	001
	of the Waiting Time Distribution	654
16.2.5	More General Motor Models	656
16.2.6	Coordination of Motor Protein Activity	658
16.2.7	Rotary Motors	660
16.3	POLYMERIZATION AND TRANSLOCATION AS MOTOR ACTION	663
16.3.1	The Polymerization Ratchet	663
	The Polymerization Ratchet Is Based on a Polymerization Reaction That Is Maintained Out of	
	Equilibrium The Polymerization Ratchet Force–Velocity Can Be	666
	Obtained by Solving a Driven Diffusion Equation	668
16.3.2	Force Generation by Growth	670
	Polymerization Forces Can Be Measured Directly	670
	Polymerization Forces Are Used to Center Cellular	672
1633	The Translocation Ratchet	673
10.5.5	Protein Binding Can Speed Up Translocation	01.5
	through a Ratcheting Mechanism	674
	The Translocation Time Can Be Estimated by Solving a Driven Diffusion Equation	676
16.4	SUMMARY AND CONCLUSIONS	677
16.5	PROBLEMS	677
16.6	FURTHER READING	679
16.7	REFERENCES	679
16.7 Chant	REFERENCES	679
Chapt and t	references ter 17 Biological Electricity he Hodgkin-Huxley Model	679 681
Chapt and the second se	REFERENCES Ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS	679 681 681
16.7 Chapt and th 17.1 17.2	REFERENCES Ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL	679 681 681 682
16.7 Chapt and th 17.1 17.2 17.2.1	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes	679 681 681 682 682
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation	679 681 681 682 682 683
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences	679 681 682 682 683 683
16.7 Chapt and ti 17.1 17.2 17.2.1 17.2.2	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND	679 681 681 682 682 683 683
16.7 Chapt and ti 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS	679 681 682 682 683 683 683 685
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up	679 681 682 682 683 683 683
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World -	679 681 682 682 683 683 683 685 685
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spiker Called Action Botontials	679 681 682 682 683 683 683 685 685
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability	679 681 682 682 683 683 683 685 685 685 686 688
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated	679 681 682 683 683 683 685 685 685 685 686
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels	679 681 682 683 683 683 685 685 685 688 688 688 688
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World - Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many Cideb Destruction	679 681 682 683 683 685 685 685 685 686 688 688
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World - Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State	679 681 682 683 683 685 685 685 685 686 688 688 688 688
16.7 Chapt and ti 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1	REFERENCES ter 17 Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane	679 681 682 682 683 685 685 685 685 686 688 688 688 688 688
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two–State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient	679 681 682 682 683 683 685 685 685 685 688 688 688 688 688 689 691 691
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1 17.3.1	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two–State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL	679 681 682 682 683 683 685 685 685 685 688 688 688 688 688 689 691 691
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1 17.3.1 17.3.2	REFERENCES ter 17 Biological Electricity he Hodgkin–Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two–State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a	679 681 682 683 683 685 685 685 685 688 688 688 688 688 689 691 691 693
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1 17.3.1 17.3.2	REFERENCES THE TIT Biological Electricity he Hodgkin-Huxley Model THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World- Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a Bistable Switch	679 681 682 683 683 685 685 685 685 688 688 688 688 688 689 691 691 693 693
16.7 Chapt and t 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1 17.3.1 17.3.2 17.4 17.4.1	REFERENCES THE 17 Biological Electricity THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World - Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a Bistable Switch Coordinated Muscle Contraction Depends Upon	679 681 682 683 683 685 685 685 685 685 688 688 688 688 688
16.7 Chapt and ti 17.1 17.2 17.2.1 17.2.2 17.3 17.3.1 17.3.1 17.3.2	REFERENCES THE 17 Biological Electricity THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a Bistable Switch Coordinated Muscle Contraction Depends Upon Membrane Depolarization	679 681 682 682 683 685 685 685 685 688 688 688 688 688 688
16.7 Chapt and t 17.1 17.2 17.2,1 17.2,2 17.3 17.3,1 17.3,1 17.3,2 17.4 17.4,1	REFERENCES THE 17 Biological Electricity THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a Bistable Switch Coordinated Muscle Contraction Depends Upon Membrane Depolarization A Patch of Cell Membrane Can Be Modeled as an Electrical Circuit	679 681 682 682 683 685 685 685 685 688 688 688 688 688 689 691 691 693 693 694 696
16.7 Chapt and t 17.1 17.2 17.2,1 17.2,2 17.3 17.3,1 17.3,1 17.3,2 17.4 17.4,1	REFERENCES THE 17 Biological Electricity THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a Bistable Switch Coordinated Muscle Contraction Depends Upon Membrane Depolarization A Patch of Cell Membrane Can Be Modeled as an Electrical Circuit The Difference Between the Membrane Potential and	679 681 682 683 683 685 685 686 688 688 688 689 691 693 693 694 696
16.7 Chapt and t 17.1 17.2 17.2,1 17.2,2 17.3 17.3,1 17.3,1 17.3,2 17.4 17.4,1	REFERENCES THE 17 Biological Electricity THE ROLE OF ELECTRICITY IN CELLS THE CHARGE STATE OF THE CELL The Electrical Status of Cells and Their Membranes Electrochemical Equilibrium and the Nernst Equation Ion Concentration Differences Across Membranes Lead to Potential Differences MEMBRANE PERMEABILITY: PUMPS AND CHANNELS A Nonequilibrium Charge Distribution Is Set Up Between the Cell Interior and the External World Signals in Cells Are Often Mediated by the Presence of Electrical Spikes Called Action Potentials Ion Channels and Membrane Permeability Ion Permeability Across Membranes Is Mediated by Ion Channels A Simple Two-State Model Can Describe Many of the Features of Voltage Gating of Ion Channels Maintaining a Nonequilibrium Charge State Ions Are Pumped Across the Cell Membrane Against an Electrochemical Gradient THE ACTION POTENTIAL Membrane Depolarization: The Membrane as a Bistable Switch Coordinated Muscle Contraction Depends Upon Membrane Depolarization A Patch of Cell Membrane Can Be Modeled as an Electrical Circuit The Difference Between the Membrane Potential and the Nernst Potential Leads to an Ionic Current	679 681 682 682 683 683 685 685 685 688 688 688 688 691 691 693 693 694 696

	Voltage-Gated Channels Result in a Nonlinear Current-Voltage Relation for the Cell Membrane A Parch of Membrane Acts as a Bistable Switch	699 700
	The Dynamics of Voltage Relaxation Can Be	
	Modeled Using an RC Circuit	702
17.4.2	The Cable Equation	703
17.4.3	Depolarization Waves	705
	Sodium Channels Switching into the Open State	705
17.4.4	Spikes	710
17.4.5	Hodgkin-Huxley and Membrane Transport	712
	Inactivation of Sodium Channels Leads to	712
	Propagating spikes	/12
17.5	SUMMARY AND CONCLUSIONS	714
17.6	PROBLEMS	714
17.7	FURTHER READING	715
17.8	REFERENCES	715
Chap	ter 18 Light and Life	717
18.1	INTRODUCTION	718
18.2	PHOTOSYNTHESIS	719
	Organisms From All Three of the Great Domains	720
1821	Quantum Mechanics for Biology	724
10.2.1	Quantum Mechanical Kinematics Describes	721
	States of the System in Terms of Wave Functions	725
	Quantum Mechanical Observables Are Represented	770
	by Operators The Time Evolution of Quantum States Can Be	128
	Determined Using the Schrödinger Equation	729
18.2.2	The Particle-in-a-Box Model	730
	Solutions for the Box of Finite Depth Do Not Vanish	
1022	at the Box Edges	731
18.2.3	Absorption Wavelengths Depend Upon Molecular	/33
	Size and Shape	735
18.2.4	Moving Electrons From Hither to Yon	737
	Excited Electrons Can Suffer Multiple Fates	737
	Electron Transfer in Photosynthesis Proceeds by	739
	Electron Transfer Between Donor and Acceptor Is	155
	Gated by Fluctuations of the Environment	745
	Resonant Transfer Processes in the Antenna	
	Complex Efficiently Deliver Energy to the Reaction	747
18.2.5	Bioenergetics of Photosynthesis	748
	Electrons Are Transferred from Donors to Acceptors	
	Within and Around the Cell Membrane	748
	Water, Water Everywhere, and Not an Electron to	750
	Charge Separation across Membranes Results in a	, 50
	Proton-Motive Force	751
18.2.6	Making Sugar	752
18.2.7	Destroying Sugar Photosynthesis in Perspective	757
10.2.0	Thousynthesis in reispective	/ 50
18.3	THE VISION THING	759
18.3.1	Bacterial "Vision" Microbial Phototaxic and Manipulating Colls with	760
10.5.2	Light	763
18.3.3	Animal Vision	763
	There Is a Simple Relationship between Eye	705
	The Resolution of Insect Eves is Coverned by	/05
	Both the Number of Ommatidia and Diffraction	
	Effects	768
	The Light-Driven Conformational Change of Retinal	760
	Information from Photon Detection Is Amplified	109
	by a Signal Transduction Cascade in the	
	Photoreceptor Cell	773

xxvi CONTENTS IN DETAIL

The Vertebrate Visual System Is Capable of Detecting Single Photons 776 18.3.4 Sex, Death, and Quantum Mechanics 781 Let There Be Light: Chemical Reactions Can Be Used 784 to Make Light SUMMARY AND CONCLUSIONS 785 18.4 APPENDIX: SIMPLE MODEL OF ELECTRON TUNNELING 785 18.5 793 PROBLEMS 18.6 FURTHER READING 795 18.7

18.8 REFERENCES 796

799

801

PART 4 THE MEANING OF LIFE

Chapter 19 Organization of Biological Networks

19.1	CHEMICAL AND INFORMATIONAL ORGANIZATION IN THE CELL Many Chemical Reactions in the Cell are Linked in	801
	Complex Networks	801
	Different Genes and Their Products	802
	Genes	802
	Gene Expression is Measured Quantitatively in Terms of How Much, When, and Where	804
19.2	GENETIC NETWORKS: DOING THE RIGHT THING AT THE RIGHT TIME	807
	Promoter Occupancy Is Dictated by the Presence of Regulatory Proteins Called Transcription	
	Factors	808
19.2.1	Promoters, Activators, and Repressors Repressor Molecules Are the Proteins That	808
	Implement Negative Control Activators Are the Proteins That Implement Positive	808
	Control Genes Can Be Regulated During Processes Other	809
	Than Transcription	809
19.2.2	The Mathematics of Recruitment and Rejection Recruitment of Proteins Reflects Cooperativity	810
	Between Different DNA-Binding Proteins The Regulation Factor Dictates How the Bare RNA	810
	Polymerase Binding Probability Is Altered by Transcription Factors	812
	Activator Bypass Experiments Show That Activators Work by Recruitment	813
	Repressor Molecules Reduce the Probability Polymerase Will Bind to the Promoter	814
19.2.3	Transcriptional Regulation by the Numbers: Binding Energies and Equilibrium Constants	819
10.2.4	Equilibrium Constants Can Be Used To Determine Regulation Factors	819
19.2.4	A Simple Statistical Mechanical Model of Positive	020
19.2.5	The lac Operon	820
	The <i>lac</i> Operon Has Features of Both Negative and Positive Regulation	822
	The Free Energy of DNA Looping Affects the	
	Repression of the lac Operon	824
1976	Inducers Tune the Level of Regulatory Response	829
15.2.0	Other Regulatory Architectures The Fold-Change for Different Regulatory Motifs	829
	Parameters	830
	Eukaryotes Can Also Be Analyzed Using	022
	mermouynamic models	032

19.3	REGULATORY DYNAMICS	835
19.3.1	The Dynamics of RNA Polymerase and the Promoter	835
	The Concentrations of Both RNA and Protein Can Be	835
10 2 2	Described Using Rate Equations	000
19.3.2	Unregulated Promoters Can Be Described By a	020
	Poisson Distribution	841
19.3.3	Dynamics of Regulated Promoters	843
	The Two-State Promoter Has a Fano Factor Greater Than One	844
	Different Regulatory Architectures Have Different	
	Fano Factors	849
19.3.4	Dynamics of Protein Translation	854
19.3.5	Genetic Switches: Natural and Synthetic	861
19.3.6	Genetic Networks That Oscillate	870
194	CELLULAR FAST RESPONSE: SIGNALING	872
19.4.1	Bacterial Chemotaxis	873
12.1.1	The MWC Model Can Be Used to Describe Bacterial	015
	Chemotaxis	878
	Relance Retween Methylation and Demethylation	881
10 4 2	Biochemistry on a Loash	001
19.4.2	Tethering Increases the Local Concentration of a	005
	Ligand	884
	Signaling Networks Help Cells Decide When and	
	Where to Grow Their Actin Filaments for Motility	884
	Synthetic Signaling Networks Permit a Dissection of	
	Signaling Pathways	885
19.5	SUMMARY AND CONCLUSIONS	888
19.6	PROBLEMS	889
19.7	FURTHER READING	891
19.8	REFERENCES	892
Chapt in Sm	er 20 Biological Patterns: Order	902
Chapt in Spa	er 20 Biological Patterns: Order Ice and Time	893
Chapt in Spa 20.1	er 20 Biological Patterns: Order ace and Time INTRODUCTION: MAKING PATTERNS	893 893
Chapt in Spa 20.1 20.1.1	er 20 Biological Patterns: Order ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time	893 893 894
Chapt in Spa 20.1 20.1.1 20.1.2	ter 20 Biological Patterns: Order ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making	893 893 894 895
Chapt in Spa 20.1 20.1.1 20.1.2 20.2	ter 20 Biological Patterns: Order ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS	893 893 894 895 896
Chapt in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1	ter 20 Biological Patterns: Order ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model	893 893 894 895 896 896
Chapt in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	ter 20 Biological Patterns: Order Ace and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes	893 893 894 895 896 896 896 898
Chapt in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	ter 20 Biological Patterns: Order Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly	893 893 894 895 896 896 898
Chapt in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	ter 20 Biological Patterns: Order Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos	893 893 894 895 896 896 898 898
Chapt in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	ter 20 Biological Patterns: Order Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to	893 893 894 895 896 896 898 898
Chapt in Spa 20.1 20.1.1 20.1.2 20.2 20.2.1 20.2.2	ter 20 Biological Patterns: Order Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient	893 894 895 896 896 898 898 898
Chapt in Spa 20.1 20.1.1 20.2 20.2 20.2.1 20.2.2 20.2.3	ter 20 Biological Patterns: Order Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling	893 894 895 896 896 898 898 898 898 899 905
Chapt in Spa 20.1 20.1.1 20.2 20.2.1 20.2.2 20.2.2 20.2.3 20.2.3	ter 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena	893 894 895 896 896 898 898 898 898 899 905 912
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.2 20.2.3 20.2.3 20.2.4 20.3	ter 20 Biological Patterns: Order The and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS	893 894 895 896 896 898 898 898 898 898 899 905 912
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.3 20.2.4 20.3 20.3.1	ter 20 Biological Patterns: Order The and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing	893 894 895 896 896 898 898 898 898 898 905 912 914
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1	ter 20 Biological Patterns: Order Acc and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns	893 893 894 895 896 896 898 898 898 898 898 899 905 912 914
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2	ter 20 Biological Patterns: Order The and Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System	893 893 894 895 896 898 898 898 898 898 899 905 912 914 914 920
Chapt in Spa 20.1 20.1.1 20.2 20.2 20.2.1 20.2.2 20.2.3 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement	893 894 895 896 898 898 898 898 898 899 905 912 914 914 920 926
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement	893 894 895 896 896 898 898 898 898 899 905 912 914 914 920 926
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION	893 894 895 896 896 898 898 898 898 905 912 914 914 920 926 926 931
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4 20.4 20.4	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis	893 894 895 896 896 898 898 898 898 905 912 914 914 920 926 931 922
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.1 20.4.2	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in <i>Anabaena</i> REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time	893 893 894 895 896 898 898 898 898 905 912 914 920 926 931 932 935
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5	Rer 20 Biological Patterns: Order A cand Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT	893 894 895 896 896 898 898 898 898 899 905 912 914 920 926 931 932 935 939
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1	Rer 20 Biological Patterns: Order A cand Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept	893 893 894 895 896 898 898 898 898 899 905 912 914 920 926 931 932 935 939 939
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2	Rer 20 Biological Patterns: Order A cand Time INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes	893 893 894 895 896 898 898 898 898 899 905 912 914 920 926 931 932 935 939 939 934
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2 20.5.1 20.5.2	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes	893 893 894 895 896 898 898 898 898 899 905 912 914 920 926 931 932 935 939 939 944 847 847 847 847 847 847 847 8
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2 20.6 20.7	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes SUMMARY AND CONCLUSIONS PDOPLEMS	893 894 895 896 896 898 898 898 898 898 899 905 912 914 920 926 931 932 935 939 939 939 939 934 937
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2 20.6 20.7	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes SUMMARY AND CONCLUSIONS PROBLEMS CUENTURD DEADING	893 893 894 895 896 898 898 898 898 899 905 912 914 920 926 931 932 935 939 939 944 947 948
Chapt in Spa 20.1 20.1.1 20.2.2 20.2.1 20.2.2 20.2.3 20.2.4 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.5 20.5.1 20.5.2 20.6 20.7 20.8	Rer 20 Biological Patterns: Order INTRODUCTION: MAKING PATTERNS Patterns in Space and Time Rules for Pattern-Making MORPHOGEN GRADIENTS The French Flag Model How the Fly Got His Stripes Bicoid Exhibits an Exponential Concentration Gradient Along the Anterior-Posterior Axis of Fly Embryos A Reaction-Diffusion Mechanism Can Give Rise to an Exponential Concentration Gradient Precision and Scaling Morphogen Patterning with Growth in Anabaena REACTION-DIFFUSION AND SPATIAL PATTERNS Putting Chemistry and Diffusion Together: Turing Patterns How Bacteria Lay Down a Coordinate System Phyllotaxis: The Art of Flower Arrangement TURNING TIME INTO SPACE: TEMPORAL OSCILLATIONS IN CELL FATE SPECIFICATION Somitogenesis Seashells Forming Patterns in Space and Time PATTERN FORMATION AS A CONTACT SPORT The Notch-Delta Concept Drosophila Eyes SUMMARY AND CONCLUSIONS PROBLEMS FURTHER READING	893 893 894 895 896 898 898 898 899 905 912 914 920 926 931 932 935 939 939 944 947 948 947

Chan	ter 21 Sequences, Specificity,	
and F	volution	951
		952
21.1	Why Sequences?	953
21.1.2	Genomes and Sequences by the Numbers	957
21.2	SEQUENCE ALIGNMENT AND HOMOLOGY	96
21 2 1	Sequence Comparison Can Sometimes Reveal Deep Functional and Evolutionary Relationships Between Genes, Proteins, and Organisms	96
21.2.1	for Bioinformatics	96
21.2.2	Scoring Success	96
211212	A Score Can Be Assigned to Different Alignments	06
	Comparison of Full Amino Acid Sequences Requires	900
	a 20-by-20 Scoring Matrix	968
	Even Random Sequences Have a Nonzero Score The Extreme Value Distribution Determines the	970
	Probability That a Given Alignment Score Would Be Found by Chance	97
	False Positives Increase as the Threshold for Acceptable Expect Values (also Called E-Values) Is Made Less Stringent	973
	Structural and Functional Similarity Do Not Always Guarantee Sequence Similarity	976
21.3	THE POWER OF SEQUENCE GAZING	976
21.3.1	Binding Probabilities and Sequence Position Weight Matrices Provide a Map Between	977
	Sequence and Binding Affinity	978
	Sequence Can Be Used to Construct Position Weight	
	Matrices	979
21.3.2 21.3.3	Using Sequence to Find Binding Sites Do Nucleosomes Care About Their Positions on	98:
	Genomes? DNA Sequencing Reveals Patterns of Nucleosome	988
	Occupancy on Genomes	989
	a Prediction for Nucleosome Positioning	, 99(
21.4	SEQUENCES AND EVOLUTION	993
21.4.1	Evolution by the Numbers: Hemoglobin and Rhodonsin as Case Studies in Seguence Alignment	004
	Sequence Similarity Is Used as a Temporal Yardstick	334
	Modern-Day Sequences Can Be Used to Reconstruct	394

51	21.4.2 21.4.3	Evolution and Drug Resistance Viruses and Evolution	998 1000
952 953		The Study of Sequence Makes it Possible to Trace the Evolutionary History of HIV The Luria–Delbrück Experiment Reveals the	1001
957		Mathematics of Resistance	1002
960	21.4.4	Phylogenetic Trees	1008
	21.5	THE MOLECULAR BASIS OF FIDELITY	1010
961	21.5.1	Keeping It Specific: Beating Thermodynamic	1011
		The Specificity of Biological Recognition Often Far	TOTT
964		Exceeds the Limit Dictated by Free-Energy	
966		Differences	1011
966		High Specificity Costs Energy	1015
	21.6	SUMMARY AND CONCLUSIONS	1016
968	21.7	PROBLEMS	1017
970	21.8	FURTHER READING	1020
	21.9	REFERENCES	1021
971			
	Chant	ter 22 Whither Physical Biology?	1023
973	22.1		1022
	22.1	DRAWING THE MAP TO SCALE	1025
976	22.2	NAVIGATING WHEN THE MAP IS WRONG	1027
976	22.3	INCREASING THE MAP RESOLUTION	1028
977	22.4	"DIFFICILITIES ON THEODY"	1020
078	22.4	"DIFFICULTIES ON THEORY"	1030
970		Modeler's Fantasy	1031
		Is it biologically interesting:	1037
979		Out-of-Equilibrium and Dynamic	1032
983		Uses and Abuses of Continuum Mechanics	1032
		Too Many Parameters	1033
988		Missing Facts	1033
080		Too Much Stuff	1033
505		Too Little Stuff	1034
990		The Myth of "THE" Cell	1034
		Not Enough Thinking	1035
993	22 5	THE RHYME AND REASON OF IT ALL	1035
994	22.6		1036
551			1050
	22.7	REFERENCES	1037
994	22.7	REFERENCES	1037

the Past