PART III Early Development: Cleavage, Gastrulation, and Axis Formation

CHAPTER 10 Sea Urchins and Tunicates: Deuterostome Invertebrates 311

Early Development in Sea Urchins 311
- Early cleavage
- Blastocele formation
- Fate maps and the determination of sea urchin blastomeres
- Gene regulatory networks and skeletogenic mesenchyme specification
- Specification of the vegetal cells

Sea Urchin Gastrulation 320
- Ingression of the skeletogenic mesenchyme
- Invagination of the archenteron

Early Development in Tunicates 328
- Cleavage
- The tunicate fate map
- Autonomous and conditional specification of tunicate blastomeres

CHAPTER 11 Amphibians and Fish 333

Early Amphibian Development 333
- Fertilization
- Cortical Rotation and Cleavage
- Unequal radial holoblastic cleavage
- The mid-blastocele transition
- Preparing for gastrulation

Amphibian Gastrulation 337
- Vegetal rotation and the invagination of the blastoe cells
- Epiboly of the prospective ectoderm
- Progressive Determination of the Amphibian Axes
- Specification of the germ layers
- The dorsal-ventral and anterior-posterior axes
- The Work of Hans Spemann and Hilde Mangold
- Autonomic specification versus inductive interactions
- Primary embryonic induction
- Molecular Mechanisms of Amphibian Axis Formation
- How does the organizer form?
- Functions of the organizer
- Induction of neural ectoderm and dorsal mesoderm
- BMP inhibitors
- Regional Specificity of Neural Induction along the Anterior-Posterior Axis
- The head inducer: Wnt antagonists
- Trunk patterning: Wnt signals and retinoic acid
- Specifying the Left-Right Axis
- Early Zebrafish Development
- Cleavage
- Gastrulation and Formation of the Germ Layers
- Dorsal-ventral axis formation
- Anterior-posterior axis formation
- Left-right axis formation

CHAPTER 12 Birds and Mammals 379

Early Development in Birds 381
- Avian Cleavage
- Gastrulation of the Avian Embryo
- The hypoblast
- The primitive streak
- Molecular mechanisms of migration through the primitive streak
- Regression of the primitive streak and epiboly of the ectoderm
- Axis Specification and the Avian "Organizer"
- The role of gravity and the PMZ
- Left-right axis formation

Early Development in Mammals 391
- Cleavage
- The unique nature of mammalian cleavage
- Compaction
- Trophoblast or ICM? The first decision of the rest of your life
- Escape from the zona pellucida and implantation
- Mammalian Gastrulation
- Modifications for development inside another organism
- Mammalian Axis Formation
- The anterior-posterior axis: Two signaling centers
- Anterior-posterior patterning by FGF and RA gradients
- Anterior-posterior patterning: The Hox code hypothesis
- The left-right axis

Early Drosophila Development 278
- Fertilization
- Cleavage
- The mid-blastula transition
- Gastrulation

The Genetic Mechanisms Patterning the Drosophila Body 284
- Segmentation and the Anterior-Posterior Body Plan
- Anterior-posterior polarity in the oocyte

Maternal gradients: Polarity regulation by oocyte cytoplasm
- The anterior organizing center: The Bicoid and Hunchback gradients
- The terminal gene group 283
- Segmentation Genes 294
- Segments and parasegments 294
- The gap genes 295
- The pair-rule genes 297
- The segment polarity genes 298

The Homeotic Selector Genes 301
- Generating the Dorsal-Ventral Axis
- Dorsal-ventral patterning in the oocyte
- Generating the dorsal-ventral axis within the embryo
- Establishing a nuclear Dorsal gradient

Axes and Organ Primordia: The Cartesian Coordinate Model
- Coda

The anterior organizing center: The Bicoid and Hunchback gradients
- The terminal gene group

Developmental Patterns among the Metazoa 252
- Basal phyla
- The triploblastic animals: Protostomes and Deuterostomes

Early Development in Snails 254
- Cleavage in Snail Embryos
- Maternal regulation of snail cleavage
- The snail fate map
- Cell specification and the polar lobe

Anterior-posterior axis formation
- Rotational cleavage of the egg
- Dorsal-ventral and right-left axis formation

Control of Blastomere Identity

Gastrulation in C. elegans 272
- The nematode C. elegans

The triploblastic animals: Protostomes and Deuterostomes 252
- Basal phyla 252
- The triploblastic animals: Protostomes and Deuterostomes 252

Early Development in Snails 254
- Cleavage in Snail Embryos 255
- Maternal regulation of snail cleavage 256
- The snail fate map 258
- Cell specification and the polar lobe 259
- Altering evolution by altering cleavage patterns: An example from a bivalve mollusk 263

Gastrulation in Snails 265
- The nematode C. elegans 265
- Cleavage and Axis Formation in C. elegans 267
- Rotational cleavage of the egg 268
- Anterior-posterior axis formation 268
- Dorsal-ventral and right-left axis formation 269
- Control of Blastomere Identity 269

Gastrulation in C. elegans 272
- The nematode C. elegans 265
- Cleavage and Axis Formation in C. elegans 267
- Rotational cleavage of the egg 268
- Anterior-posterior axis formation 268
- Dorsal-ventral and right-left axis formation 269
- Control of Blastomere Identity 269
- Gastrulation in C. elegans 272

CHAPTER 9 The Genetics of Axis Specification in Drosophila 277

Early Drosophila Development 278
- Fertilization
- Cleavage
- The mid-blastula transition
- Gastrulation

The Genetic Mechanisms Patterning the Drosophila Body 284
- Segmentation and the Anterior-Posterior Body Plan
- Anterior-posterior polarity in the oocyte
Turing's model: A reaction-diffusion mechanism of proximal-distal limb development 631

Specifying the Anterior-Posterior Axis 635

Sonic hedgehog defines a zone of polarizing activity 635

Specifying digit identity by Sonic hedgehog 636

Sonic hedgehog and FGFR Another positive feedback loop 639

Hox specification of the digits 640

A Turing model for self-organizing digit skeletogenesis 642

Generating the Dorsal-Ventral Axis 644

Cell Death and the Formation of Digits and Joints 645

Sculpting the autopod 645

Forming the joints 646

Continued limb growth: Epiphyseal plates 647

Fibroblast growth factor receptors: Dwarfism 648

Evolution by Altering Limb Signaling Centers 649

The Pharynx 655

The Digestive Tube and Its Derivatives 657

Specification of the gut tissue 658

Accessory organs: The liver, pancreas, and gallbladder 660

The Respiratory Tube 666

CHAPTER 20

The Endoderm: Tubes and Organs for Digestion and Respiration 653

CHAPTER 21

Metamorphosis: The Hormonal Reactivation of Development 671

Amphibian Metamorphosis 672

Morphological changes associated with amphibian metamorphosis 673

Hormonal control of amphibian metamorphosis 675

Regionally specific developmental programs 678

Metamorphosis in Insects 679

Imaginal discs 680

Hormonal control of insect metamorphosis 683

The molecular biology of 20-hydroxyecdysone activity 685

Determination of the wing imaginal discs 688

Metamorphosis of the Pluteus Larva 690

PART VII ■ Development in Wider Contexts

CHAPTER 22

Many Ways to Rebuild 694

Hydra: Stem Cell-Mediated Regeneration, Morphallaxis, and Epedimorphosis 695

Routine cell replacement by three types of stem cells 696

The head activator 697

The head inhibition gradients 699

Stem Cell-Mediated Regeneration in Flatworms 701

Salamanders: Epimorphic Limb Regeneration 707

Formation of the apical epidermal cap and regeneration blastema 708

Proliferation of the blastema cells: The requirement for nerves and the apical epidermal cap 711

CHAPTER 23

Aging and Senescence 723

Many Ways to Rebuild 694

Hydra: Stem Cell-Mediated Regeneration, Morphallaxis, and Epedimorphosis 695

CHAPTER 24

Development in Health and Disease: Birth Defects, Endocrine Disruptors, and Cancer 735

The Role of Chance 736

Genetic Errors of Human Development 736

The nature of human syndromes 736

Genetic and phenotypic heterogeneity 738

Teratogenesis: Environmental Assaults on Animal Development 738

Alcohol as a teratogen 741

Retinoic acid as a teratogen 744

Endocrine Disruptors: The Embryonic Origins of Adult Disease 747

Diethylstilbestrol (DES) 747

Bisphenol A (BPA) 749

Altazines: Endocrine disruption through hormone synthesis 751

Flaxing: A potential new source of endocrine disruption 752

Transgenerational Inheritance of Developmental Disorders 753

CHAPTER 25

Development and the Environment: Biotic, Abiotic, and Symbiotic Regulation of Development 763

The Environment as a Normal Agent in Producing Phenotypes 764

Diet-induced phenoplasticism 764

Temperature as an environmental agent 771

Polyphenic Life Cycles 773

Larval settlement 773

The hard life of spadefoot toads 774

Developmental Symbioses 775

Mechanisms of developmental symbiosis: Getting the partners together 776

The Euprymna-Vibrio symbiosis 777

Obligate developmental mutualism 778

Developmental symbiosis in the mammalian intestine 779

Coda 782

Coda 786
CHAPTER 26
Development and Evolution: Developmental Mechanisms of Evolutionary Change 785

Descent with Modification: Why Animals Are Alike and Different 786
Preconditions for Evolution: The Developmental Structure of the Genome 786
 Modularity: Divergence through dissociation 787
 Molecular parsimony: Gene duplication and divergence 789
Deep Homology 792
Mechanisms of Evolutionary Change 793
 Heterotopy 794

Heterochrony 795
Heterometry 796
Heterotypy 798
Developmental Constraints on Evolution 799
Selectable Epigenetic Variation 801
 Genetic assimilation 804
 Fixation of environmentally induced phenotypes 806
Coda 807

Glossary G-1
Author Index AI-1
Subject Index SI-1